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Ocean sequestration options

Source: IPCC Special Report on CC&S, 2005
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Context: CO2 Emissions

Pacala & Socolow (2004) :
WRE500 scenario requires 
avoiding 175 GtC emissions in 
the next 50 years.

How much of the 175 GtC
could be accounted for by 
ocean sequestration 
(responsibly)?



May 10, 2006 4

Ocean sequestration main criteria

Sequestration efficiency
• How long will the carbon be sequestered from the 

atmosphere?

Biological impact
• Acute
• Chronic
• Ecosystem

Cost

Present Focus

In particular, to what extent
do the biological impacts of
CO2-induced pH perturbations
limit the viability of ocean 
sequestration?
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Variation in Deep-Ocean pH across Zoogeographic Regions & 
Bathymetric Ranges

Broad vertical range
pH range: 0.04 – 0.5

Average vertical range
pH range: 0.03 – 0.43

Narrow vertical range
pH range: 0.02 – 0.41

Source: Barry et al. 2005 (AGU Fall Meeting)

JGOFS/WOCE
pH stations + 
zoogeographic 
regions
(Mironov, 1987)
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Summary of pH variations

Variation at one station

Source: Barry et al. 2005 (AGU Fall Meeting)

Assume |ΔpH| < 0.1 “no ecosystem impact”
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Expected impacts of a 175 GtC loading?

What about 
local hot spots 

(mixing zones)?
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Assuming a well-mixed ocean

We will consider a simple loading scenario:

• 4,000 500-MW coal plants (100 kgCO2/s each) for 50 years

Simulate 3 discharge scenarios:
• Fixed hydrate plume
• Towed hydrate plume
• Bottom manifold (pipeline)
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Adams & Wannamaker, JMEE 2005

• 800 m release depth 
• 100 kg/s CO2
• Pure solid hydrate spheres
• 2.5 cm initial diameter
• 5 cm/s ambient current

Stationary dense hydrate plume

3700 m plume depth
(negatively buoyant)
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Adams & Wannamaker, JMEE 2005

• 800 m release depth 
• 100 kg/s CO2
• Pure solid hydrate spheres
• 2.5 cm initial diameter
• 3 m/s ship speed
• 5 cm/s ambient current

Towed pipe dense hydrate plume

1370 m plume depth
(negatively buoyant)
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Adams & Wannamaker, JMEE 2005

• 800 - 1200 m release depth
• Slope ~ 0.1 
• 100 x 1 kg/s CO2
• Spaced over 4500 m 
• Liquid CO2 (w/ hydrate film)
• 7 mm droplet diameter
• 5 cm/s ambient current

Bottom manifold release

250 m plume height
(positively buoyant)
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Initial plume volumes

• Volume with pH drop > 0.1: ~ 0.2 - 7 km3

• Towed pipe release produces smallest mixing zone

Single 500-MW coal plant (100 kgCO2/s)
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• There is a limit to how long required dilution can be achieved
• What about acute effects?
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4000 single-plant discharges
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~175 GtC total
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Auerbach et al. (1997)
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Auerbach et al. (1997), Caulfield et al. (1997)
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calculate many organism
exposures to get spatial
“zooplankton defecit”

“Isomortality” simulations

• For 3 scenarios considered, model predicts negligible acute impacts

• Need to augment with new data: CO2 stress & deep ocean species
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Estimated Acute impacts
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Predicting a low impact Caulfield et al. (1997)

Optimistic dispersion
Optimistic mortality curve

(Refinements ongoing)

Poor dilution
Optimistic mortality curve

Expect acute impact volumes to be smaller than “ecosystem volume” 
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Conclusions

• Ocean storage can only be a short to mid-term solution.

• Based on initial acute and ecosystem considerations, it 
appears that deep ocean sequestration could be 
engineered to play a significant role in short to mid-term 
emissions reductions.

• Consideration of more realistic discharge scenarios and 
biological data are ongoing.



Questions?




